Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507413

RESUMEN

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/metabolismo , Neoplasias Hepáticas/patología , ARN/metabolismo , Sumoilación
2.
Biofactors ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193795

RESUMEN

T-cell intracellular antigen-1 (TIA-1) is a key RNA-binding protein that participates in translation regulation and RNA splicing. TIA-1 undergoes liquid-liquid phase separation as a fundamental mechanism that enables the condensation of RNA and proteins into membraneless organelles called stress granules (SGs). However, this dynamic behavior can lead to aberrant fibril formation, implicated in neurodegenerative disorders, and must be tightly regulated. In this study, we investigated the role in the cell of histidine residues His94 and His96, responsible for Zn2+ binding. Using fluorescence microscopy, we found that the specific binding site formed by these residues is critical for SG assembly. Furthermore, it also plays a role maintaining the dynamic behavior of SG-assembled TIA-1. Collectively, our findings confirm the physiological relevance of TIA-1 His94 and His96 in the Zn2+ -mediated regulatory mechanism for protection against fibril formation in SGs.

4.
Adv Sci (Weinh) ; 10(29): e2301859, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548614

RESUMEN

Chromatin homeostasis mediates essential processes in eukaryotes, where histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. The dynamic nature of these processes, however, has severely impeded their characterization at the molecular level. Here, fluorescence optical tweezers are applied to follow histone chaperone dynamics in real time. The molecular action of SET/template-activating factor-Iß and nucleophosmin 1-representing the two most common histone chaperone folds-are examined using both nucleosomes and isolated histones. It is shown that these chaperones present binding specificity for fully dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, the histone eviction process and its modulation by cytochrome c are scrutinized. This approach shows that despite the different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.


Asunto(s)
Histonas , Nucleosomas , Histonas/genética , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Citocromos c/metabolismo , Cromatina , Proteínas Portadoras/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
5.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541251

RESUMEN

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Hígado/metabolismo , Lisina/metabolismo , Glucosa/metabolismo
6.
Nat Commun ; 14(1): 4166, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443314

RESUMEN

Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.


Asunto(s)
Lisina , Daño por Reperfusión , Animales , Porcinos , Lisina/metabolismo , Citocromos c/metabolismo , Fosforilación , Acetilación , Procesamiento Proteico-Postraduccional , Apoptosis , Respiración de la Célula/fisiología , Daño por Reperfusión/metabolismo , Músculo Esquelético/metabolismo
7.
Sci Rep ; 13(1): 8293, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217546

RESUMEN

Obesity is associated with adipose tissue dysfunction through the differentiation and expansion of pre-adipocytes to adipocytes (hyperplasia) and/or increases in size of pre-existing adipocytes (hypertrophy). A cascade of transcriptional events coordinates the differentiation of pre-adipocytes into fully differentiated adipocytes; the process of adipogenesis. Although nicotinamide N-methyltransferase (NNMT) has been associated with obesity, how NNMT is regulated during adipogenesis, and the underlying regulatory mechanisms, remain undefined. In present study we used genetic and pharmacological approaches to elucidate the molecular signals driving NNMT activation and its role during adipogenesis. Firstly, we demonstrated that during the early phase of adipocyte differentiation NNMT is transactivated by CCAAT/Enhancer Binding Protein beta (CEBPB) in response to glucocorticoid (GC) induction. We found that Nnmt knockout, using CRISPR/Cas9 approach, impaired terminal adipogenesis by influencing the timing of cellular commitment and cell cycle exit during mitotic clonal expansion, as demonstrated by cell cycle analysis and RNA sequencing experiments. Biochemical and computational methods showed that a novel small molecule, called CC-410, stably binds to and highly specifically inhibits NNMT. CC-410 was, therefore, used to modulate protein activity during pre-adipocyte differentiation stages, demonstrating that, in line with the genetic approach, chemical inhibition of NNMT at the early stages of adipogenesis impairs terminal differentiation by deregulating the GC network. These congruent results conclusively demonstrate that NNMT is a key component of the GC-CEBP axis during the early stages of adipogenesis and could be a potential therapeutic target for both early-onset obesity and glucocorticoid-induced obesity.


Asunto(s)
Adipogénesis , Nicotinamida N-Metiltransferasa , Ratones , Animales , Adipogénesis/genética , Nicotinamida N-Metiltransferasa/metabolismo , Glucocorticoides/uso terapéutico , Diferenciación Celular , Transducción de Señal , Obesidad/genética , Obesidad/tratamiento farmacológico , Células 3T3-L1 , PPAR gamma/metabolismo
8.
Biofactors ; 49(1): 4-5, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36718852
9.
Hum Mol Genet ; 32(5): 790-797, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36136759

RESUMEN

Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.


Asunto(s)
Eosinófilos , Estudio de Asociación del Genoma Completo , Humanos , Cromosomas Humanos Par 11 , Polimorfismo de Nucleótido Simple , Inmunidad Innata
10.
Nat Commun ; 13(1): 7100, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402842

RESUMEN

It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.


Asunto(s)
Respiración de la Célula , Citocromos c , Transporte de Electrón , Fosforilación , Oxidación-Reducción
11.
Nat Struct Mol Biol ; 29(10): 1024-1036, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220893

RESUMEN

The regular functioning of the nucleolus and nucleus-mitochondria crosstalk are considered unrelated processes, yet cytochrome c (Cc) migrates to the nucleus and even the nucleolus under stress conditions. Nucleolar liquid-liquid phase separation usually serves the cell as a fast, smart mechanism to control the spatial localization and trafficking of nuclear proteins. Actually, the alternative reading frame (ARF), a tumor suppressor protein sequestered by nucleophosmin (NPM) in the nucleoli, is shifted out from NPM upon DNA damage. DNA damage also triggers early translocation of respiratory Cc to nucleus before cytoplasmic caspase activation. Here, we show that Cc can bind to nucleolar NPM by triggering an extended-to-compact conformational change, driving ARF release. Such a NPM-Cc nucleolar interaction can be extended to a general mechanism for DNA damage in which the lysine-rich regions of Cc-rather than the canonical, arginine-rich stretches of membrane-less organelle components-controls the trafficking and availability of nucleolar proteins.


Asunto(s)
Citocromos c , Nucleofosmina , Arginina , Caspasas , Lisina , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor
12.
Front Mol Biosci ; 9: 960806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911965

RESUMEN

Stress granules are non-membrane bound RNA-protein granules essential for survival during acute cellular stress. TIA-1 is a key protein in the formation of stress granules that undergoes liquid-liquid phase separation by association with specific RNAs and protein-protein interactions. However, the fundamental properties of the TIA-1 protein that enable phase-separation also render TIA-1 susceptible to the formation of irreversible fibrillar aggregates. Despite this, within physiological stress granules, TIA-1 is not present as fibrils, pointing to additional factors within the cell that prevent TIA-1 aggregation. Here we show that heterotypic interactions with stress granule co-factors Zn2+ and RGG-rich regions from FUS each act together with nucleic acid to induce the liquid-liquid phase separation of TIA-1. In contrast, these co-factors do not enhance nucleic acid induced fibril formation of TIA-1, but rather robustly inhibit the process. NMR titration experiments revealed specific interactions between Zn2+ and H94 and H96 in RRM2 of TIA-1. Strikingly, this interaction promotes multimerization of TIA-1 independently of the prion-like domain. Thus, through different molecular mechanisms, these stress granule co-factors promote TIA-1 liquid-liquid phase separation and suppress fibrillar aggregates, potentially contributing to the dynamic nature of stress granules and the cellular protection that they provide.

13.
Comput Struct Biotechnol J ; 20: 3695-3707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891793

RESUMEN

Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iß (SET/TAF-Iß), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iß is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iß is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iß:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iß (a.k.a. SET/TAF-Iß ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.

14.
Biochim Biophys Acta Bioenerg ; 1863(7): 148570, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35643148

RESUMEN

Post-translational modifications and naturally occurring mutations of cytochrome c have been recognized as a regulatory mechanism to control its biology. In this work, we investigate the effect of such in vivo chemical modifications of human cytochrome c on its redox properties in the adsorbed state onto an electrode. In particular, tyrosines 48 and 97 have been replaced by the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF), thus mimicking tyrosine phosphorylation. Additionally, tyrosine 48 has been replaced by a histidine producing the natural Y48H pathogenic mutant. Thermodynamics and kinetics of the interfacial electron transfer of wild-type cytochrome c and herein produced variants, adsorbed electrostatically under different local interfacial electric fields, were determined by means of variable temperature cyclic film voltammetry. It is shown that non-native cytochrome c variants immobilized under a low interfacial electric field display redox thermodynamics and kinetics similar to those of wild-type cytochrome c. However, upon increasing the strength of the electric field, the redox thermodynamics and kinetics of the modified proteins markedly differ from those of the wild-type species. The mutations promote stabilization of the oxidized form and a significant increase in the activation enthalpy values that can be ascribed to a subtle distortion of the heme cofactor and/or difference of the amino acid rearrangements rather than to a coarse protein structural change. Overall, these results point to a combined effect of the single point mutations at positions 48 and 97 and the strength of electrostatic binding on the regulatory mechanism of mitochondrial membrane activity, when acting as a redox shuttle protein.


Asunto(s)
Citocromos c , Tirosina , Citocromos c/metabolismo , Electrodos , Humanos , Oxidación-Reducción , Termodinámica , Tirosina/metabolismo
15.
Cancers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35681645

RESUMEN

Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers. An overview of the main regulatory axes involving HuR, which are associated with cell proliferation, invasion, metastasis, apoptosis, and autophagy in HCC, is provided. These include the transcriptional, post-transcriptional, and post-translational modulators of HuR function, in addition to HuR target transcripts. Finally, whereas studies addressing the relevance of targeting HuR in CCA are limited, in the past few years, HuR has emerged as a potential therapeutic target in HCC. In fact, the therapeutic efficacy of some pharmacological inhibitors of HuR has been evaluated, in early experimental models of HCC. We, further, discuss the major findings and future perspectives of therapeutic approaches that specifically block HuR interactions, either with post-translational modifiers or cognate transcripts in hepatobiliary cancers.

16.
FEBS Open Bio ; 12(4): 758-774, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218162

RESUMEN

More than 50 years have passed since Nobel laureate Cristian de Duve described for the first time the presence of tiny subcellular compartments filled with hydrolytic enzymes: the lysosome. For a long time, lysosomes were deemed simple waste bags exerting a plethora of hydrolytic activities involved in the recycling of biopolymers, and lysosomal genes were considered to just be simple housekeeping genes, transcribed in a constitutive fashion. However, lysosomes are emerging as multifunctional signalling hubs involved in multiple aspects of cell biology, both under homeostatic and pathological conditions. Lysosomes are involved in the regulation of cell metabolism through the mTOR/TFEB axis. They are also key players in the regulation and onset of the immune response. Furthermore, it is becoming clear that lysosomal hydrolases can regulate several biological processes outside of the lysosome. They are also implicated in a complex communication network among subcellular compartments that involves intimate organelle-to-organelle contacts. Furthermore, lysosomal dysfunction is nowadays accepted as the causative event behind several human pathologies: low frequency inherited diseases, cancer, or neurodegenerative, metabolic, inflammatory, and autoimmune diseases. Recent advances in our knowledge of the complex biology of lysosomes have established them as promising therapeutic targets for the treatment of different pathologies. Although recent discoveries have started to highlight that lysosomes are controlled by a complex web of regulatory networks, which in some cases seem to be cell- and stimuli-dependent, to harness the full potential of lysosomes as therapeutic targets, we need a deeper understanding of the little-known signalling pathways regulating this subcellular compartment and its functions.


Asunto(s)
Lisosomas , Transducción de Señal , Homeostasis , Humanos , Lisosomas/metabolismo
17.
FEBS Open Bio ; 11(9): 2388-2389, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34469072

RESUMEN

While most organelles are surrounded by membranes, cells also contain membraneless organelles, which remain separated in the cell by avoiding the mixture of their components with the surroundings. Actually, liquid-liquid phase separation provides a simple but smart mechanism for the cell to control the spatial localization and processing of molecules, without relying on membrane boundaries. This Special 'In the Limelight' section, entitled 'Membraneless organelles', consists of three review articles, each focused on a particular aspect. The first article deals with assembly of coacervates as mediated by polyproline II helices, as well as with condensate stability. The second article addresses the formation of protein-nucleic acid coacervates by prion-like proteins and their link to human diseases. Finally, the last article focuses on mitochondrial cytochrome c translocation into the nucleus after DNA damage, with the subsequent inhibition of nucleosome assembly/disassembly activity of histone chaperones and its impact on chromatin dynamics and nuclear condensates.


Asunto(s)
Fenómenos Fisiológicos Celulares , Metabolismo Energético , Orgánulos/fisiología , Animales , Susceptibilidad a Enfermedades , Homeostasis , Humanos
18.
FEBS Open Bio ; 11(12): 3304-3323, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455704

RESUMEN

Post-translational modifications frequently modulate protein functions. Lysine acetylation in particular plays a key role in interactions between respiratory cytochrome c and its metabolic partners. To date, in vivo acetylation of lysines at positions 8 and 53 has specifically been identified in mammalian cytochrome c, but little is known about the structural basis of acetylation-induced functional changes. Here, we independently replaced these two residues in recombinant human cytochrome c with glutamine to mimic lysine acetylation and then characterized the structure and function of the resulting K8Q and K53Q mutants. We found that the physicochemical features were mostly unchanged in the two acetyl-mimetic mutants, but their thermal stability was significantly altered. NMR chemical shift perturbations of the backbone amide resonances revealed local structural changes, and the thermodynamics and kinetics of electron transfer in mutants immobilized on gold electrodes showed an increase in both protein dynamics and solvent involvement in the redox process. We also observed that the K8Q (but not the K53Q) mutation slightly increased the binding affinity of cytochrome c to its physiological electron donor, cytochrome c1 -which is a component of mitochondrial complex III, or cytochrome bc1 -thus suggesting that Lys8 (but not Lys53) is located in the interaction area. Finally, the K8Q and K53Q mutants exhibited reduced efficiency as electron donors to complex IV, or cytochrome c oxidase.


Asunto(s)
Citocromos c/genética , Citocromos c/metabolismo , Lisina/metabolismo , Acetilación , Animales , Sitios de Unión , Citocromos c/ultraestructura , Citocromos c1/química , Citocromos c1/metabolismo , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Cinética , Lisina/genética , Mutación , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad , Termodinámica
19.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34089346

RESUMEN

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Ciclinas/metabolismo , Homeostasis , Magnesio/metabolismo , Factores de Ribosilacion-ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilación , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica
20.
FEBS Open Bio ; 11(9): 2418-2440, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938164

RESUMEN

Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.


Asunto(s)
Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Citocromos c/metabolismo , Chaperonas de Histonas/metabolismo , Mitocondrias/metabolismo , Animales , Núcleo Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Citocromos c/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Histonas/metabolismo , Humanos , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...